110 research outputs found

    Preparation and characterization of polypropylene/silica composite particle with interpenetrating network via hot emulsion sol–gel approach

    Get PDF
    AbstractA novel interpenetrating structural ultrafine polypropylene-silica nanocomposite particles were synthesized by a modified sol–gel approach in the presence of the melt polypropylene emulsion. A series of samples with different polypropylene content was prepared to investigate the unique characteristics of this original nanocomposite. The thermal gravimetric analysis and differential scanning calorimetry results showed that the nanocomposites had the interpenetrating structure and good thermal stability, and the crystallization behavior of polypropylene was confined by the silica matrix. The interpenetrating structure of nanocomposites was also suggested by the nitrogen adsorption–desorption measurement results. The scanning electronic microscope and transmission electron microscopy images indicated that the nanocomposites had irregular particle morphology. The nanoparticle tracking analysis results show that the mean size of the nanocomposites was around 160nm. According to the results obtained from different measurements, a reasonable formation mechanism was proposed

    A Novel Process Network Model for Interacting Context-Aware Web Services

    Full text link

    Study of Ammonia Concentration Characteristics and Optimization in Broiler Chamber during Winter Based on Computational Fluid Dynamics

    Get PDF
    Poultry breeding is one of the most significant components of agriculture and an essential link of material exchange between humans and nature. Moreover, poultry breeding technology has a considerable impact on the life quality of human beings, and could even influence the survival of human beings. As one of the most popular poultry, broiler has a good economic benefit due to its excellent taste and fast growing cycle. This paper aims to improve the efficiency of raising broilers by understanding the impact of ammonia concentration distribution within a smart broiler breeding chamber, and the rationality of the system’s design. More specifically, we used computational fluid dynamics (CFD) technology to simulate the process of ammonia production and identify the characteristics of ammonia concentration. Based on the simulation results, the structure of the broiler chamber was reformed, and the ammonia uniformity was significantly improved after the structural modification of the broiler chamber and the ammonia concentration in the chamber had remained extremely low. In general, this study provides a reference for structural optimization of the design of broiler chambers and the environmental regulation of ammonia

    Isolation and characterization of a genotype 4 Hepatitis E virus strain from an infant in China

    Get PDF
    In the present study, a genotype 4 HEV strain was identified in the fecal specimen from a seven months old infant with no symptom of hepatitis in Shanghai Children's hospital. The full capsid protein gene (ORF2) sequence of this strain was determined by RT-PCR method. Sequence analysis based on the full ORF2 sequence indicated that this HEV strain shared the highest sequence identity (97.6%) with another human HEV strain isolated from a Japanese patient who was infected by genotype 4 HEV during traveling in Shanghai. Phylogenetic analysis showed that this genotype 4 HEV was phylogenetically far from the genotype 4 HEV strain that was commonly prevalent in Shanghai swine group, suggesting that this strain may not come from swine group and not involved in zoonotic transmission in this area

    On the Use of Neumann Decomposition for Crop Classification Using Multi-Temporal RADARSAT-2 Polarimetric SAR Data

    Get PDF
    In previous studies, parameters derived from polarimetric target decompositions have proven as very effective features for crop classification with single/multi-temporal polarimetric synthetic aperture radar (PolSAR) data. In particular, a classical eigenvalue-eigenvector-based decomposition approach named after Cloude–Pottier decomposition (or “H/A/α”) has been frequently used to construct classification approaches. A model-based decomposition approach proposed by Neumann some years ago provides two parameters with very similar physical meanings to polarimetric scattering entropy H and the alpha angle α in Cloude–Pottier decomposition. However, the main aim of the Neumann decomposition is to describe the morphological characteristics of vegetation. Therefore, it is worth investigating the performance of Neumann decomposition on crop classification, since vegetation is the principal type of targets in agricultural scenes. In this paper, a multi-temporal supervised classification method based on Neumann decomposition and Random Forest Classifier (named “ND-RF”) is proposed. The three parameters from Neumann decomposition, computed along the time series of data, are used as classification features. Finally, the Random Forest Classifier is applied for supervised classification. For comparison, an analogue classification scheme is constructed by replacing the Neumann decomposition with the Cloude–Pottier decomposition, hence named CP-RF. For validation, a time series of 11 polarimetric RADARSAT-2 SAR images acquired over an agricultural site in London, Ontario, Canada in 2015 is employed. Totally, 10 multi-temporal combinations of datasets were tested by adding images one by one sequentially along the SAR observation time. The results show that the ND-RF method generally produces better classification performance than the CP-RF method, with the largest improvement of over 12% in overall accuracy. Further tests show that the two parameters similar to entropy and alpha angle produce classification results close to those of CP-RF, whereas the third parameter in the Neumann decomposition is more effective in improving the classification accuracy with respect to the Cloude–Pottier decomposition.This research was funded in part by the Canadian Space Agency SOAR-E program (Grant No. SOAR-E-5489), the National Natural Science Foundation of China (Grant No. 41804004, 41820104005, 41531068), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG190633), and the Spanish Ministry of Science, Innovation and Universities, State Research Agency (AEI) and the European Regional Development Fund under project TEC2017-85244-C2-1-P

    Hepatitis E Virus Infection in Central China Reveals No Evidence of Cross-Species Transmission between Human and Swine in This Area

    Get PDF
    Hepatitis E virus (HEV) is a zoonotic pathogen of which several species of animal were reported as reservoirs. Swine stands out as the major reservoir for HEV infection in humans, as suggested by the close genetic relationship of swine and human virus. Since 2000, Genotype 4 HEV has become the dominant cause of hepatitis E disease in China. Recent reports showed that genotype 4 HEV is freely transmitted between humans and swine in eastern and southern China. However, the infection status of HEV in human and swine populations in central China is still unclear. This study was conducted in a rural area of central China, where there are many commercial swine farms. A total of 1476 serum and 554 fecal specimens were collected from the general human and swine populations in this area, respectively. The seroepidemiological study was conducted by enzyme-linked immunosorbent assay. Conserved genomic sequences of open reading frame 2 were detected using reverse transcription-PCR. The results indicated that the overall viral burden of the general human subjects was 0.95% (14/1476), while 7.0% (39/554) of the swine excreted HEV in stool. The positive rate of anti-HEV IgG and IgM in the serum samples was 7.9% (117/1476) and 1.6% (24/1476), respectively. Phylogenetic analysis based on the 150 nt partial sequence of the capsid protein gene showed that the 53 swine and human HEV isolates in the current study all belonged to genotype 4, clustering into three major groups. However, the HEV isolates prevalent in the human and swine populations were classified into known distinct subgenotypes, which suggested that no cross-species transmission between swine and humans had taken place in this area. This result was confirmed by cloning and phylogenetic analysis of the complete capsid protein gene sequence of three representative HEV strains in the three major groups. The cross reactivity between anti-HEV IgG from human sera and the two representative strains from swine in central China was confirmed by Dot-blot assay. In conclusion, although all the HEV strains prevalent in central China belonged to genotype 4, there is no evidence of cross-species transmission between human and swine in this area
    • …
    corecore